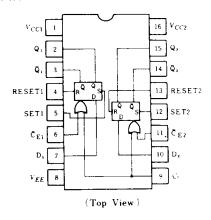
HD10231


High Speed Dual D-type Master-Slave Flip Flops

The HD10231 is a dual master-slave type D flip-flop. Asynchronous Set(S) and Reset(R) override Clock (C_C) and Clock Enable $\overline{(CE)}$ inputs. Each flip-flop may be clocked separately by holding the common clock in the low state and using the enable inputs for the clocking function. If the common clock is to be used to clock the flip-flop, the Clock Enable inputs must be in the

low state. In this case, the enable inputs perform the function of controlling the common clock.

The output states of the flip-flop change on the positive transition of the clock. A change in the information present at the data(D) input will not affect the output information at any other time due to master-slave construction.

PIN ARRANGEMENT

FUNCTION TABLE

• R-S

R	S	Q,	Q
L	L	Q,	Q.
L.	Н	н	L
Н	L	L	Н
Н	Н	×	×

× : Don't Care

CLOCK

С	D	Q
L	×	Q.
Ť	L	L
†	Н	Н

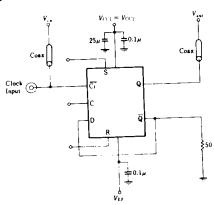
1. × Don't Care

2. C = C̄ε+Cc

3. † I transition from low to high

DC CHARACTERISTICS ($V_{EE} = -5.2\text{V}$, $Ta = -30 \sim +85^{\circ}\text{C}$)

Item	Symbol	Test Co	ondition	ion min typ				Unit
Supply Current	IEE			25℃	-	52	65	mA
			$D, \overline{C_E}$				220	
	I _{1H}	$V_{IH} = -0.810 \mathrm{V}$	Cc	25°C	_		290	μA
Input Current			S, R		_	-	410	
Supply Current Input Current Output Voltage	I _{1.L.}	$V_{II} = -1.850 \mathrm{V}$	25 ℃	0.5			μΑ	
	$V_{\gamma (B)}$	$V_{IH} = -0.890 \text{ V} \text{ or } V_{IL} = -1.890 \text{ V}$		- 30 °C	- 1.060		-0.890	v
		$V_{IH} = -0.810 \text{V} \text{ or } V_{IL} = -1.$	25°C	- 0.960	_	-0.810		
		$V_{IH} = -0.700 \text{ V} \text{ or } V_{IL} = -1.$	85°C	0.890		-0.700		
Output Voltage	V _{OL}	$V_{IL} = -1.890 \text{V or } V_{IH} = -0.$	-30°C	-1.890	-	-1.675	v	
Output Voltage		$V_{IL} = -1.850 \text{V or } V_{IH} = -0.$	25 ℃	1.850	_	1.650		
		$V_{IL} = -1.825 \text{V or } V_{IR} = -0.$	85°C	-1.825		-1.615		
Output Threshold Voltage		$V_{IHA} = -1.205 \text{V} \text{ or } V_{IIA} = -$	- 30°C	-1.080	_		ν	
	VOHA	$V_{IHA} = -1.105 \text{V}$ or $V_{ILA} = -1.475 \text{V}$		25 ℃	-0.980			_
		$V_{IHA} = -1.035 \text{V or } V_{ILA} = -$	85° C	0.910		_		
		$V_{ILA} = -1.500 \text{V} \text{ or } V_{IHA} = -$	− 30° C		_	-1.655		
	VOLA	$V_{ILA} = -1.475 \text{V or } V_{IHA} = -$	25°C		-	-1.630	v	
		$V_{ILA} = -1.440 \text{V or } V_{IHA} = -$	85° C	_		-1.595		

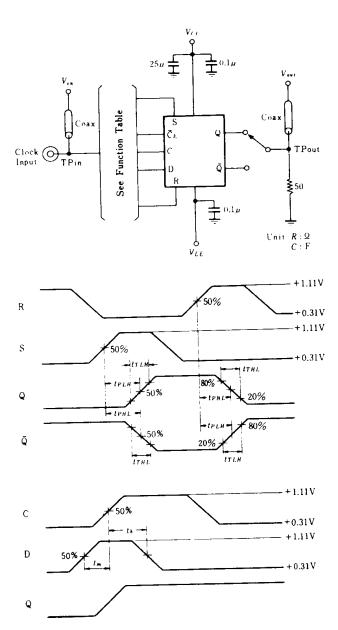


\blacksquare AC CHARACTERISTICS ($V_{EE}=-3.2\mathrm{V},\ V_{CC}=+2.0\mathrm{V},\ Ta=-30\sim+85^{\circ}\mathrm{C}$)

			Output	$\frac{\gamma_{cc} = +2.0\text{V}, \ Ta}{\text{Test Condition}}$		min	typ	max	Unit		
Item	Symbol	Input	Output		-30°C	1.4	-	3.4			
					25°C	1.5	_	3.3			
	tren				85° C	1.5	_	3.7			
		Ē, Ē₅	Q, Q	-	-30°C	1.4		3.4			
				-	25°C	1.5	_	3.3	_		
	tpHL			Ţ	85° C	1.5	_	3.7			
					-30°C	1.0		3.4			
			Q. Q		25°C	1.1		3.3			
Propagation	t _{PLH}				85° C	1.1		3.7	ns		
	-	s			-30°C	1.0		3.4			
Delay Time		Ì			25 ℃	1.1		3.3			
	t PHL				85° ℃	1.1	_	3.7			
					− 30° C	1.0		3.4			
		j			25℃	1.1		3.3			
	t _{PLH}			$R_{L}=50\Omega$,	85°C	1.1		3.7			
		R	Q, Q		- 30 °C	1.0		3.4	ns		
					25° ℃	1.1		3.3			
· ·	t _{PHI} .				85 °C	1.1		3.7			
					− 30° C	0.9		3.3			
					25° C	1.0		3.1			
Rise Time	t _{т і. н}		Q. Q		85° ℃	1.0		3.5			
Fall Time tr					−30° C	0.9		3.3	_		
					25° C	1.0		3.1	ns		
	I _{THI} .				85° C	1.0		3.5			
			c Q. Q	_	25° C			1.0	ns		
Setup Time	1	$D \rightarrow C$			25° ℃	_	_	0.75	ns		
Hold Time					-30°C	200			_		
Max. Toggle			_		25°C	200	250		_ МН		
Frequency	J Tos	J To a	J Tog	_			85° ℃	200	_	_	

■ TEST CIRCUIT OF AC CHARACTERISTICS

1. Toggle Frequency


Notes)

- 50Ω termination to ground located in each scope channel input. All input and output cables to the scope are equal lengths of 50Ω coaxial cable.
 Wire length should be <6.35mm (1/4 inch) from TPin to input pin and TPout to output pin.

@HITACHI

118

2. Switching Time

Notes)

- 50Ω termination to ground located in each scope channel input. All input and output cables to the scope are equal lengths of 50Ω coaxial cable.
 Wire length should be <6.35mm (1/4 inch) from TPin to input air and TPout to support air.
- to input pin and TPout to output pin.

 tsu is the minimum time before the positive transition of the clock pulse that information must be present at the data.
- $t_{\mbox{\scriptsize h}}$ is the minimum time after the positive transition of the clock pulse that information must remain unchanged at data.
 5. Input Pulse; $t_{TLH}=t_{THL}=1.5\pm0.2$ ns (20% to 80%).